solvex^4+2x^3-15x^2-36x=0

Simple and best practice solution for solvex^4+2x^3-15x^2-36x=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for solvex^4+2x^3-15x^2-36x=0 equation:


Simplifying
solvex4 + 2x3 + -15x2 + -36x = 0

Reorder the terms:
elosvx4 + -36x + -15x2 + 2x3 = 0

Solving
elosvx4 + -36x + -15x2 + 2x3 = 0

Solving for variable 'e'.

Move all terms containing e to the left, all other terms to the right.

Add '36x' to each side of the equation.
elosvx4 + -36x + -15x2 + 36x + 2x3 = 0 + 36x

Reorder the terms:
elosvx4 + -36x + 36x + -15x2 + 2x3 = 0 + 36x

Combine like terms: -36x + 36x = 0
elosvx4 + 0 + -15x2 + 2x3 = 0 + 36x
elosvx4 + -15x2 + 2x3 = 0 + 36x
Remove the zero:
elosvx4 + -15x2 + 2x3 = 36x

Add '15x2' to each side of the equation.
elosvx4 + -15x2 + 15x2 + 2x3 = 36x + 15x2

Combine like terms: -15x2 + 15x2 = 0
elosvx4 + 0 + 2x3 = 36x + 15x2
elosvx4 + 2x3 = 36x + 15x2

Add '-2x3' to each side of the equation.
elosvx4 + 2x3 + -2x3 = 36x + 15x2 + -2x3

Combine like terms: 2x3 + -2x3 = 0
elosvx4 + 0 = 36x + 15x2 + -2x3
elosvx4 = 36x + 15x2 + -2x3

Divide each side by 'losvx4'.
e = 36l-1o-1s-1v-1x-3 + 15l-1o-1s-1v-1x-2 + -2l-1o-1s-1v-1x-1

Simplifying
e = 36l-1o-1s-1v-1x-3 + 15l-1o-1s-1v-1x-2 + -2l-1o-1s-1v-1x-1

See similar equations:

| 3-(6u-7)=4u-2 | | 0.4x=52 | | 0=-[x]+2 | | 3xy/2x×4xy | | 0.5x+2=38 | | b^3-5b^2-4b+20= | | -(x/3)=28 | | 3x+24=12x | | 9(2x+3)=129 | | -2(2s-2)-4=-3(4s+5)-3 | | 6x+4yx=equation | | 9(2x+3)=29 | | 65/(25-(x^2))=0 | | 6~(x)=5/~(x)-13 | | x^2+x+1=x+2 | | -2(s-2)-4=-3(4s+5)-3 | | 1(7x+8)=910 | | 21-(x+5)=8x-2 | | x^2-60x+y=0 | | 180/135 | | x(3x-8)=-3 | | 135/180 | | 2(13t-4)=90 | | 3tanx=5 | | r-14=-49 | | y+(6.2)=8.1 | | r-49=-49 | | 2(13t-4)=30 | | -6t+3t-5=0 | | 9y^2-16=16 | | 3+x-6x=38 | | X=(2*y)/(3*y-1) |

Equations solver categories